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The EXPERIMENT HEADER includes the information in the Expt_InfoRec ond the Plot_infoRec.

The SPECTRUM HEADER conlains the information in the Spectrum_InfoRec, including the
Element_InfoRec, ond Acq_InfoRec:

A spectrum includes the SPECTRUM HEADER and the Spectrum_counts.

An experiment file will contoin the EXPERIMENT HEADER, ond n spectro( n=z1 ) spectrum files

Each spectrum image memory will contain o Work_Spectrum.

Expt_InfoRec

LostSpect
FirstSpec
Specimen_[D
MCA_F i I engme

Specimen_Comment_Field

PassWord
File_Protect
Anglyst
DetectorD
Azimuth
Elevation
Detector_Area

Detector_Thickness

C_Thickness
Diomond

Mylar
BN_Thickness
SiN_Thickness
lce_Thickness
Au_Thickness
Al_Thickness
Be_Thickness
Si_Thickness
spared
sporeb

spare4

dt.
Si_Resolution

- RECORD

; String (50);

{ lost Spectrum }
{ first spectrum }

Integer;
Integer;

: String {25);

o Strds;
: String(25);

{ To unlock the below “protect”)

. Booleon;
: String(50);
. real;

: reol;
. real;
1 reol;
. real;
1 reol;
: oreal;
. reol;
1 oreol;
. real;
. reol;
: real;
1 real;
. real;
. reol;
. reol;
1 oreal;
1 reol;
: real;
: real;

F1G.21

degrees |

os pure oxygen |

SS5S55S5S58S5§85

eV at M K olpha |
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end;

Plot_InfoRec

end;

Mar. 29, 1994

Energy_Intercept
Energy_Stope
Number_of_Channels
kv

Detector_Tilt
Quantum

Spore2

Spare3

=RECORD
Piot_Connected
Plot_Symbol
Spectrum_Color

Sheet 20 of 65

: reol;
: real;

integer,

: real;
: real;
1 real;
. Booleon;

Integer;

Integer;
Integer;

{ y intercept inev |

{ Beto |

{ the Demo file booleon |

: Arroy {1..3} of Integer; |Red, Green, Biue}

FIG.21 Cont.

15,299,138
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Acq_InfoRec

end:

Spectrum_InfoRec

Probed_Areo
X_Position
Y_Position
Specimen_Temperoture
Yocuum

Begin_f aradoy
End_Foroday
Begin_Time

Real_Time

Live_Time
Slow_Chonne!_Counts
Medium_Channel_Counts
Fost_Channel_Counts
RequestedLiveTime
ActualLiveTime
Acquiring

LLo

Offset

PulseProcessor Type
PulseProcessorSelting

Spectrum_Type
Spectrum_Comment _Field
Spectrum_Number
Spectrum_Class
Theoretically_Genercted
This_is_o_Stendord
BkgSubtrocted

Mox imum_Counts
Minimum_Counts

XTilt

Y_Tilt

Take_Off_Angle
Spec_Detector_Distance
Spare
Specimen_Thickness

Mar. 29, 1994

~ = RECORD

= RECORD

. real; |
: real; |
: real; |
. real; §
: real;

: reol; {oemi

FI1G.22

Sheet 21 of 65 5,299,138
. reol; { omsq. to colculote current density |
: real; dimensionless |
. reol; dimensionless |
: reol;
. real;
. real; nA |
. real; nA |
. DoteTimeRec;
. real; { The time on the wall }
: real;

. Longint; { Represents total out counts }

: Longint; | If UTW. Approx. input counts below 1 keV |
: Longint; § Represents total input counts above 1 keV |
: Longint;

: Longint;

. Boolean;

. INTEGER; § Acquisition setup diolog box |

. INTEGER; | Acquisition setup dialog box |

INTEGER;
INTEGER;

: String {4};
. Str25%;

Integer; { Position of spectrum in o collection |

: String {25},
. Booleon;

. Boolean;

: Booleon;

: real;

: reol;
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Specimen_Density
Number_of _E lements
Element_Info
Averoge_

Spare!

Spore?

Spared

END;

Element_InfoRec

end;

Atomic_number
Sparel
Weight_Fraction
Spore?

Volence

Spectrum_counts

Work_Spectrum

Expt_Info
Plot_Info
Spectrumstuff
S

END;

Mar. 29, 1994

. real;

Sheet 22 of 65 5,299,138

{ gfem sq. |

: Integer;

: orray § 1..MoxNunPks | of Element_InfoRec:
. real; '

: real;

. Booleon;

{ used to denote demo spectrum |

: Integer;

= RECORD

Integer;

. real;
: reol; { We will alwoys store os wt fr |
. real;
. real;

= ARRAY

= RECORD

{1..8192} OF Real;

. Expt_InfoRec;

: Plot_InfoRec;

: Spectrum_Structure;
. Spectrum_counts;

FIG.22 Cont.
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The M. SETUP FILES include the informalion in M_Stuff.

Deriv_info = record i used to store info cbout derivalives lo use }
/4 . integer;
Family . slring}1} {Fomily_Type};
uselst : booleon;
usend . boolean;
end;
ML _Stuff = record
number _of_files . integer;
The_F i le_Nome . Arroy{1..5} of fnomestr; | reference files used ]
refindex . NPKARRAY,
number _of_ML.windows : integer;
number _of _refs : integer;
M__LoeV . PKARRAY; | low energy of eoch peck ROl }
M._HieV : PKARRAY; | high energy of each peak RO }
number _of _derivs : integer;
window_e!emen! : NPKARRAY; { olomic number of eoch element |
weFomi ly : Arroy {1, MoxNuPks} of stringf1} {Famly_Type}
Number _of _refs_in_Window o NPKARRAY;
number_of_der ivs_Window o NPKARRAY;
First_Ref : NPKARRAY;
Lost_ref : NPKARRAY;
First Deriv : NPKARRAY;
Last_deriv : NPKARRAY:
DoFirst - "¢ Arroy {1..MoxNurPks} of boolean;
DoSecond : Array {1..MoxNuPks} of booleon;
Bkglo : integer;
BkgHi : inleger;
BkgAreo : real;
end;

FIG 23
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A file of REFERENCES contains the following informalion for each reference distribution.

References_Rec = RECORD

Dolo
oreo
dt
kv
Intercept
Stope
FWM_Mn
Atomic_Number
Family
Begin_Energy
End_Energy
Stondard_Used
Comments

END;

. reolWindowArroy; | the ref: segnent of o spectrum |
¢ REAL;

. REAL;

o OREAL

o REAL;

: REAL;

o REAL;

. inleger;

: stringjl];

: REAL; | low energy of Lhe seqmenl of o spectrum in eV |
: REAL; | high energy of Lhe segment in eV |

: SUr255; { name of the spectrum file |

: Str2sy;

The XRAY DATA FILE contains the density and olomic weight of each elemenl; for every
characteristic line: olomic number, wovelenglh, ond line weight; and the wovelengths of ol

obsorption edges.

F1G.23 Cont.
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A PREFERENCES FILE includes the information contoined in the RECORD Setting.

Setting - RECORD

sText_Color
sPeakROI_Color
sBkqROI_Color
sScaleRO0I_Color
sQuantROI_Color
sAxes_Color
sBackGround_Color
sPeakLobe!_Color
sKLMColor
SpectrumColor
sGeom

Peak

BackGround

Scole

Quont

Expt_Info
Plot_Info
SpectrumStuff
counts

Toler

DEN

DFWHW

Switch
Constraini_Switch
Incomptete_Charge_Switchs
WiSwitch

Number _of_BackGrounds
Number_of_PeakRois
Element?2
Sili_Response
Spectrum_Class_Holding_String
BoxLeft

BoxTop

XCenter

YCenter
High_Peak_Meos
High_Peak_Book
Low_Peak_Meos
Low_Peak_Book
NM_Alpho

NM_Beto

: REAL;
. REAL;
: REAL;
: REAL;
: REAL;
: REAL;

: RGBColor;
. RGBColor;
. RGBColor;
: RGBColor;
: RGBColor;
. RGBColor;
: RGBColor;
. RGBColor;
: RGBColor;
: ARRAY {1..1c] of RGBColor;
: Geometry;
: ARRAY {1..Mox_ROIs} OF ROI_Doto_Structure;
: ARRAY {1. .Mox_ROIs} OF ROI_Dato_Structure;
: ROI_Dato_Structure;

. ROI_Dato_Structure;

. Expt_InfoRec;
: Plot_InfoRec;
. Spectrum_Structure;
. Spectrum_counts;
. reol;

. real;

1 oreol;

1 real;

. Booleon;

: Boolean;

: Booleon;

integer;
integer;

integer;
integer;
integer;
integer;

. ARRAY {1. .MaxNurPks | OF integer;
: Spectrum_counts;
. ARRAY {1..13} OF Str2ss;

FIG.27A
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NV_Gommo : REAL;

Amp_Perturb . REAL;

Energy_Perturb :OREAL;

Width_Perturb : REAL;

Enerqgy_Estimate : REAL;

Num_Noise_Spectro : integer;
Thin_Fluor_Yield : REAL;

Bulk_Fluor_Yield : REAL;

Thin_K _Xsect . integer;
Bulk_K_Xsect : integer;
Thin_L_Xsect : integer;
Bulk_L _Xsecl . integer;
Thin_M_Xsect : integer;
Bulk_M_Xsect : integer;
Bulk_CONT Xsect : integer;
Thin_CONT Xsect : integer;
Bulk_CONT_Xsect_BG . integer;
Thin_CONT_Xsect_BG . integer;
Thin_Wk_Choice . integer;
Thin_Rs!t_Choice . inleger;
Thin_S1_Choice . integer;
Thin_S2_Choice . integer;
Thin_S3_Choice . integer;
Thin_S4_Choice . integer;
Thin_S5_Choice . integer;
Thin_S6_Choice . integer;
Thin_S7_Choice . inleger;
Thin_S8_Choice . integer;
Bulk_Wk_Choice : integer;
Bulk_Rslt_Choice : integer;
Bulk_S1_Choice : inleger;
Bulk_S2_Choice : integer;
Bulk_S3_Choice ¢ integer;
Bulk_S4_Choice . integer;
Bulk_S5_Choice : integer;
Bulk_S6_Choice : integer;
Bulk_S7_Choice : integer;
Bulk_S8_Choice . integer;
Bulk_K_Scalefactor : REAL;

Bulk_L_Scalefactor o REAL;

Bulk_M_Scalefactor o REAL;

Bulk_CONT_Scalefactor : REAL;

Thin_K_ScaleFactor : REAL;

Thin_L_Scalefoctor : REAL;

FIG.27A Cont.
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Thin_M_Scalefoctor . REAL;
Thin_CONT_Scalefactor . REAL;
Mu_Choice : integer;
Live_Time : REAL;
Thickness . REAL;
Foradoy_Current . REAL;

* Thin_At_Num : Arroy {1..15} of integer;
Thin_Concentration . Arroy }1..15} of real;
Thin_KV : REAL;
Thin_density : REAL;
tilt . REAL;
Bulk_At_Num . Arroy §1..15} of integer
Bulk_Concentration . Array §1..15] of real;
Bulk_KV : REAL;
Number of Elements Simplexes : integer;
Elements_Chosen . Booleon;
Running_Bulk_Mode : Boolean,
Running_Thin_Mode : Booleon;
Thin_Physics_Boolean : Booleon;
Bulk_Physics_Boolean . Boolean;
L . REAL;
XX -+ REAL;
YY : REAL;
iz . REAL;
Clmnl . integer;
Clmn2 : integer;
Clmn3d : integer;
Sound_0f f "+ Boolean;
Normal _Qutput . Boolean,;
Reduced_Output . Booleon;
SiLi_Areo . real;
MN_FHM : : reol;
Det_Thickness . reol;
S1_DeodZone . real;
Au_Contact . real;
Be_Window . reol;
Pulse_Width . reol;
Oxygen_Window . real;
Carbon_Window : real;
BN_Thickness . real;
SiN_Thickness . real;
Mytar . real;
Diomond . reol;
Quontum . reol;

ENS!uminum_Window :. real; FlG.27B
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1
DESK TOP SPECTRUM ANALYZER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an x-ray spectrum
analysis system for spectra obtained with an electron
microscope instrument. More particularly, the inven-
tion pertains to a computer based analyzer system
which allows an analyst to extract quantitative informa-
tion from experimentally acquired x-ray spectra and to
simulate the experimental environment to generate the-
oretical spectra.

2. Description of Related Art

The physics and mathematics required to describe the
generation and detection of a spectrum of characteristic
and continuum x-rays resulting from the interaction of
an electron beam with a specimen is described in an
extensive body of literature. The generation of x-rays by
interaction of an electron beam with a specimen is de-
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20

pendent upon the elemental composition of the speci- -

men. Further complicating the process is the fact that
detectors for the detection of x-rays have varying sensi-
tivities, depending upon their construction. In use, the
electron beam microscope is used to excite a spectrum
representative of the sample. The final spectrum pres-
ented to the analyzer system depends on the specimen
composition and geometry, the detector sensitivity, and
the geometry of the electron microscope and detector
configuration. The spectrum is then analyzed to deter-
mine the constituent elements of the sample and the
relative proportions or absolute concentration of the
elements in the sample.

The microprobe assay of a specimen must provide
both a mean and the variance about this mean for each
analyte or elemental constituent of a specimen. The
mean refers to the estimate of the weight or atom con-
centration at a single analytical point, or some local
grouping of points, from a homogeneous region of the
specimen. The variance about this mean then represents
the uncertainty due to counting statistics plus those
aspects of the data reduction procedure which will
contribute uncertainty, such as peak unraveling and
continuum suppression. The accuracy of the estimate is
a measure of the closeness of the estimate to the true
value of the concentration. The task of predicting the
variance about this estimated concentration can range
from easy to quite difficult. As the specimen is further
examined at many points, any variance greater than that
determined above will represent true compositional
variation. A significant period of time is required to
collect enough data to analyze the specimen and esti-
mate the concentration of the constituent elements to a
sufficient accuracy and to a required level of confi-
dence.

As with all measuring devices, the energy-dispersive
x-ray analysis system has for a given set of conditions a
sensitivity which translates into a minimum concentra-
tion of analyte that can be reported with a certain level
of confidence. This quantity is often referred to as the
minimum detectable limit (MDL) and its estimation can
also range from easy to quite difficult.

A spectrum observed with an energy-dispersive spec-
trometer (EDS) consists of x-rays arising from both the
characteristic and the continuum process. The x-ray
peaks arising from the characteristic process contain the
analytical information sought. Often the peaks to be
determined overlap with the peaks from other elemen-
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tal constituents of the specimen. Furthermore, the peaks
are always superposed onto a smoothly varying spec-
trum of x-rays arising from the continuum process; and
both the characteristic and continuum signals are modu-
lated by the effects of counting statistics.

The MDL and variance about a measured concentra-
tion depend on the magnitude of the peak and back-
ground intensities, the degree of peak overlap, and the
algorithms used to extract the required peak intensity
and background intensity values below the peak. In
general, there is no straightforward way of estimating
the quantities required for standard statistical treatment.
Therefore, many analysts, when faced with the problem
of providing good error estimates, resort to the time-
consuming but extremely reliable technique of direct
measurement. In this method the specimen is sampled n
times at a number of representative locations. For each
of the n replicate measurements at each location one
goes through all the spectra processing and data reduc-
tion steps required to arrive at an elemental concentra-
tion, where n is preferably greater than 25. From the n
results at each location the analyst can then predict by
conventional statistical methods the expected variance -
for each of the elemental concentrations at the various
presumably representative locations. Knowing the ex-
pected variances the analyst can then proceed on with a
strategy of single measurements at each analytical point
in the specimen. For specimens with many phases or a
wide range of compositions this procedure can be quite
daunting. One approach to reducing the amount of time
expended collecting the spectra data is to predict the
minimum detectable limit achievable under proposed
experimental conditions and to adjust these conditions
to meet the requirements of the analysis.

There is an ever-growing body of knowledge con-
cerning the physics of electron-specimen interaction
and of the energy-dispersive x-ray spectrometer used to
detect the resulting x-rays. The requisite knowledge is
now at hand to generate from first principles an x-ray
spectrum that is more than sufficiently close in all of the
germane physical and statistical properties to represent
an actual spectrum from a real specimen. From gener-
ated spectra one could then deduce accurate estimates
of variance about mean compositional values and MDL
of any analyzable stable element in any stable matrix.
One might also accurately estimate the elemental com-
position of the specimen without the need to measure a
set of calibration standards. Furthermore, one might
adjust the experimental parameters to determine the
optimum set that will produce the lowest MDL. One
could do that relatively rapidly before even presenting
a specimen to the electron beam.

By so determining the minimum detectable limits, the
experiment could be designed so as to collect sufficient
but not excessive spectrum data.

The electron microscope system is an expensive sys-
tem to procure and operate. When analysis of the col-
lected spectrum is performed using the computer analy-
sis system ‘that is part of the electron microscope sys-
tem, the electron microscope system may not be used
for the collection of x-ray spectra data. It would be
beneficial to separate the analysis of spectra function
from the collection of spectra function.

SUMMARY OF THE INVENTION

1t is an object of the present invention to provide a
system for the analysis of x-ray spectra that is indepen-
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dent of the electron microscope/x-ray acquisition sys-
tem that collects x-ray spectra data.

This and other objects are achieved by a spectrum
analyzer system comprising a spectrum analyzer, a data
interface such as a serial data transfer line or disk for
transferring . spectra data from an electron micro-
scope/x-ray acquisition system to the spectrum analy-
zer, and an output device, driven by the spectrum analy-
zer, for producing printed graphs and reports. The
spectrum analyzer comprises a microcomputer having
processing means for analyzing and transforming spec-
tra data according to control modes defined by the
analyst. Further, the spectrum analyzer preferably has
an operator interface comprising a mouse and keyboard
for receiving commands from an operator to define the
control mode and a display for displaying the control
mode and the processed spectra data. Further, the spec-
trum analyzer preferably comprises an input device for
receiving the spectra data from an electron micro-
scope/x-ray acquisition system and an output device
driving a printer capable of printing graphics and text
reports.

Yet another object of the invention is elemental anal-
ysis where a sample spectrum is plotted and displayed,
peak areas determined and converted to concentrations
using an appropriate quantitation scheme.

Yet another object of the invention is to provide the
system by which an operator may adjust parameters
pertaining to the generation of the theoretical spectrum
and so that the differences between the displayed theo-
retical spectrum and the displayed sample spectrum are
minimized and by which Poisson counting noise may be
added to n generated spectra to simulate the experimen-
tal determination of variance and MDL.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects will be described in the fol-
lowing detailed description of the preferred embodi-
ments taken in conjunction with the accompanying
drawings wherein:

FIG. 1 illustrates the spectrum analyzer and its inter-
faces;

FIG. 2 illustrates a typical electron microscope;

FIG. 3 illustrates one embodiment of the spectrum
analyzer;

FIG. 4 illustrates an embodiment of the process for
generation of a theoretical spectrum;

FIG. 5A is a graph showing the spectral response of
a real iron sample overlayed on a generated theoretical
iron spectrum;

FIG. 5B is a graph of a typical spectral response for
a sample having a plurality of constituent elements;

FIG. 6 illustrates processing for an interface trans-
form;

FIG. 7 illustrates a display interface for the spectrum
analyzer;

FIG. 8 illustrates processing filters and transforms for
the spectrum analyzer;

FIG. 9 illustrates a method of elemental analysis;

FIG. 10 illustrates manipulation of fit results files;

FIG. 11 illustrates the process of converting external
files to internal binary form;

FIG. 12 illustrates the process of making a reference
for multiple linear least squares fitting of spectrum
peaks;

FIG. 13 illustrates the process of fitting spectrum
peaks by the sequential simplex method;
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FIG. 14 illustrates the process of making various
output formats of a fit results file

FIG. 15 illustrates the process of performing a ZAF
quantitative analysis to make standards data;

FIG. 16 illustrates the process of performing a Hall
quantitative analysis;

FIG. 17 illustrates the process of making a preference
file on program termination;

FIG. 18 illustrates the process of performing a ZAF
quantitative analysis without measured standards data;

FIG. 19 illustrates the process of fitting spectrum
peaks by the multiple linear least squares method;

FIG. 20 illustrates processing of preference files;

FIG. 21 illustrates the data structure for the Experi-
ment Header of an experiment file;

FIG. 22 illustrates the data structure for Spectrum
Header of each spectrum of an experiment file, and for
the spectrum image memories;

FIG. 23 illustrates the data structure for the multiple
linear least squares regression set up files and references
of the preferred embodiment;

FIG. 24 illustrates the data structure for the fit results
file of the preferred embodiment

FIG. 25 illustrates the data structure for the Hall file
of the preferred embodiment;

FIG. 26 illustrates the data structure of the ZAF file
of the preferred embodiment;

FIGS. 27A and 27B illustrate the data structure of the
preferences file of the preferred embodiment;

FIG. 28 illustrates the opening display by which the
desktop spectrum analyzer is opened;

FIG. 29 illustrates the main display of the desktop
spectrum analyzer;

FIG. 30 illustrates the file submenu of the desktop
spectrum analyzer;

FIG. 31 illustrates the analysis submenu of the desk-
top spectrum analyzer;

FIG. 32 illustrates the generate submenu of the desk-
top spectrum analyzer;

FIG. 33 illustrates the math submenu of the desktop
spectrum analyzer;

FIG. 34 illustrates the parameters submenu of the
desktop spectrum analyzer;

FIG. 35 illustrates the display submenu of the desktop
spectrum analyzer;

FIG. 36 illustrates the show header submenu of the
desktop spectrum analyzer;

FIG. 37 illustrates the display options dialogue inter-
face;

FIG. 38 illustrates the first thin target spectrum dia-
logue interface of the generate submenu;

FIG. 39 illustrates the pick output destinations dia-
logue interface of the thin target spectrum dialogue
interface of the generate submenu;

FIG. 40 illustrates the first detector parameters dia-
logue interface of the parameter submenu;

FIG. 41 illustrates the detector-specimen geometry
dialogue interface of the detector parameters dialogue
interface of the parameters submenu;

FIG. 42 illustrates the calculator dialogue interface;

FIG. 43 illustrates the convert WDS scan to energy
scale dialogue interface of the math submenu;

FIG. 44 iilustrates the overlayed display;

FIG. 45 illustrates the dialogue interface for the strip
peaks menu selection;

FIG. 46 illustrates a fit results display;

FIG. 47 illustrates the read sundry file formats dia-
logue interface for the file submenu;
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FIG. 48 illustrates the experiment header dialogue
interface of the parameters submenu;

FIG. 49 illustrates the spectrum header dialogue in-
terface of the parameters submenu;

FIG. 50 illustrates a menu for choosing references to
display and the reference display;

FIG. 51 illustrates a background subtract dialogue
interface for the math submenu;

FIG. 52 illustrates a dialogue interface for defining
statistical parameters to compute variance and mini-
mum detectable limits;

FIG. 53 illustrates the display for selecting a region of
interest (ROI);

FIG. 54 illustrates a simplex setup dialogue interface;

FIG. 55 illustrates a select elements dialogue inter-
face;

FIG. 56 illustrates an output options dialogue inter-
face;

FIG. 57 illustrates a ZAF quantitization dialogue
interface of the analysis submenu;

FIG. 58 illustrates a Hall bio-analysis dialogue inter-
face of the analysis submenu;

FIG. 59 illustrates a standardless ZAF analysis dia-
logue of the analysis submenu;

FIG. 60 illustrates the setup interface dialogue for
multiple linear least squares analysis; '

FIG. 61 illustrates the control dialog interface for
NuBus-based spectrum acquisition; and

FIG. 62 illustrates the acquisition parameter sub-
dialog interface for NuBus-based spectrum acquisition.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The known equations required to describe the gener-
ation and modification of the characteristic x-ray lines
and background x-ray distribution in the specimen, the
geometrical dependence of the detected radiation and
the alteration of the spectrum by the detection process
are incorporated in the spectrum analyzer. In one em-
bodiment of the spectrum analyzer, spectra may be
generated by the system or imported from an external
source by the user and transformed to an internal for-
mat, and displayed in any one of ten spectra overlays of
8192 channels each. The values required for quantita-
tive analysis of an experimentally collected spectrum
may be extracted from the spectrum using multiple
linear regression analysis or by the non-linear sequential
simplex method. The analyst may choose among a num-
ber of widely accepted quantitation methods to obtain
chemical concentrations expressed in the units appro-
priate to the particular method. The results of an analy-
sis, of one spectrum or many spectra, may be saved as a
binary file, an ASCII file, and one or more of the more
popular readily available spreadsheet files for later sta-
tistical analysis. The system affords the analysts a full
suite of mathematical tools to manipulate spectra such
as scaling, summing, and filtering. Markers may be
selected to indicate from one to all lines of an element,
as well as the escape peaks, double energy peaks, and
edges; labels may be displayed for each.

The analyst controls the progress of the analysis by
selecting control modes from menus, dialogues and
diagrams displaying values in editable text and options
selected by, for example, mouse click or equivalent
interface. Each value and option is operational until
changed by the user, and, on exit from the program, all
values and options are saved to become active on start-
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up. A set of all values may be saved at any time to a
‘preference’ file which the user can make the active set.

A computer environment which allows the user to
interact with a computer system by means of windows,
dialogues, pull-down menus and check boxes is avail-
able in commercial systems. The present invention de-
scribed herein is one such system distinguished in that it
enables the analyst to process and display spectra data
from electron column instruments, and also provides
the analyst the additional powerful capability to model
the physical processes involved in the generation of an
x-ray spectrum. The procedure to emulate the experi-
mental environment and specimen to generate a series
of spectra reflecting the relevant physics and statistics
was previously described in terms of the application to
estimating detection limits under proposed experimen-
tal conditions. This procedure clearly could reduce the
amount of electron microscope time expended to ac-
quire a particular set of useful data but, more fundamen-
tally, it enables the analyst to develop an understanding
of the physical and statistical parameters that affect the
spectrum distribution and detection limits.

A major advantage of the system is that desktop anal-
ysis and processing of spectrum allows the analyzer on
the electron beam instrument to remain free for data
acquisition. Spectra acquired on a commercial multi-
channel analyzer are converted to the system binary
format by selecting from a menu of possible incoming

. formats and then stored in a menu specified file of re-

lated spectra. Spectra acquired with wavelength disper-
sive detector can also be converted to an energy distri-
bution, scaled appropriately for direct comparison with
Si(Li) detector spectra, and stored in the internal for-
mat. These spectra can be processed in a batch mode of
operation using either the non-linear sequential simplex
method of fitting generated Gaussians or the linear
method for fitting reference spectra, with or without
derivative references, to extract peak to background
ratios. Required fitting information is provided by
checking boxes and editing default text values or by
accessing a file of previously chosen preferences. The
results of the fitting procedure are automatically stored
in an appendable binary file which can be accessed by
the appropriate menu chosen quantitation procedure.
They also can be reported in any of the common spread-
sheet formats for convenient statistical analysis and
plotting and as an ASCII text file.

Reference spectra required by the program for the
analysis of a specified set of elements are automatically
read from selections made by the analyst from a menu of
previously created files. Each of these files contains any
number of spectrum segments, either generated or ac-
quired, all with experimental conditions such as kV and
detector the same. The experimental parameters of the
selected reference file are verified by the program to
match those of the spectrum to be analyzed and the
analyst is prompted to choose another file if a discrep-
ancy is found. An appropriately generated background
may be automatically subtracted from an acquired spec-
trum before storing the peak distribution in a reference
file.

In generating a theoretical spectrum, functions such
as the response of the silicon detector (lithium drifted
silicon detector referred to as Si(Li)), mass absorption,
the continuum distribution and characteristic peaks
before and after convolution with the detector function
are calculated and available for concurrent display in
any of ten 8192 channel real valued ‘spectrum displays’.
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This affords the researcher a means to study the effect
of the various physical phenomena at each step of spec-
trum production and on the final detected spectrum.
One may vary detector characteristics such as the thick-
ness of the gold contact layer, window, Si(Li) dead
zone or ice, the resolution, or experimental parameters
such as kV and specimen characteristics. By comparing
detected distributions to generated the analyst can as-
sess the physical condition of the detector-microscope
environment or the suitability of experimental parame-
ters for his analysis objective.

Any displayed distribution, be it an acquired spec-
trum, the results of fitting and stripping peaks from an
acquired spectrum, a generated spectrum, or any distri-
bution calculated to generate a spectrum, may be sent
directly to a printer or stored in a file. Displayed distri-
butions also may be summed, scaled, digitally filtered,
Fourier transformed, smoothed, peak stripped and oth-
erwise modified by a simple selection from a number of
menus. An option to determine the operating voltage
based on the method for determining the Duane-Hunt
energy limit is also available.

A software interface to any spectrum acquisition
system based on a NuBus card is provided. The user is
able to set acquisition parameters such as acquisition
time, eV per channel, discriminator setting, and the
parameters of the particular pulse processor of the de-
tector system and to control acquisition by means of
dialogue interfaces. The spectrum data counts are accu-
mulated and displayed in the Work spectrum image
memory as they are acquired. Any processing function

. of the analyzer may be applied to the accumulated spec-
trum data while acquisition continues. The final spec-
trum accumulated in the Work spectrum image memory
inay be saved as a binary experiment file.

In FIG. 1, electron microscope/analyzer system 2
produces x-ray spectrum data 3 in a format defined by
the analyzer system of the electron microscope. Spec-
trum data 3 is either stored in data interchange interface
4, which may be a floppy disk or other data interchange
interface, or is stored on a hard disk and transferred to
the spectrum analyzer via serial lines. The format of
spectrum data 3 stored in data interchange interface 4
varies between different manufacturers of x-ray analy-
zers. Data interchange interface 4 is ported to spectrum
analyzer 6 where the data interchange interface is re-
ceived. An analyst working with the various controls of
spectrum analyzer 6 produces output data which is
transferred to output interface 8. Output interface 8 may
be, for example, a laser printer capable of printing the
analyzer 6 graphics display graphs and report text, or it
may be a disk for electronic storage and later transfer of
data.

FIG. 2 illustrates a typical electron beam microscope.
Electron gun 20 produces electron beam 22 which
passes through condenser lens 24 and through final-
stage focusing lens 26 before impinging on specimen 36.
Electron beam-scanning coil 28 is disposed proximally
to the electron beam to make electron beam 22 scan the
specimen surface in two dimensions. Electron beam-
scanning coil 28 is driven by control signal 40. Speci-
men 36 is carried on specimen stage 38 which is moved
according to control signal 42,

Disposed above the specimen are spectral crystal 32
and x-ray detector 34. Spectral crystal 32 and x-ray
detector 34 together comprise a wave-dispersive x-ray
spectrometer. X-rays emanating from specimen 36 ar-
rive at spectral crystal 32 and are dispersed by the crys-

8

tal structure. Only a certain wavelength of the x-rays is
directed into x-ray detector 34 to produce detected
signal 46. Spectral crystal 32 and x-ray detector 34 are
moved such that a given relationship between them is
maintained. Thus, different wavelengths of x-rays im-

. pinge upon detector 34 successively. As a result, the
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specimen is wavelength swept. Detector 34 forms out-
put pulses which comprise signal 46. The output pulses
are counted over a predetermined time and stored.

X-rays emanating from specimen 36 and arriving at
detector 30 form an energy dispersive x-ray spectrome-
ter. Detector 30 produces a pulse signal having a pulse
amplitude corresponding to the energy of the incident
x-ray. Output pulses of signal 46 is stored. A plurality of
such pulse signals are counted to form an energy distri-
bution spectrum.

FIG. 3 illustrates an embodiment of spectrum analy-
zer 6. In this embodiment, an analyst interfaces with
microcomputer 60 through keyboard/mouse 64 and
display 66. Input device 68 receives data interchange
interface 4, from FIG. 1. Thereafter, microcomputer 60
reads data from input device 68, processes the data and
stores the data on disk storage 62. It will be appreciated
that other storage media may be used in place of disk
storage 62. After data is processed in microcomputer
60, it is transferred to output device 70. Output device
70 drives output interface 8, of FIG. 1. Spectrum analy-
zer 6 is based upon a microcomputer design so that it
may be conveniently located on an analyst’s desktop.
Microcomputer 60, under user commands from key-
board/mouse 64, performs a variety of processing tasks.

FIG. 4 illustrates one such processing task. Operator
interface 82 comprises both keyboard/mouse 64 and
display 66 as well as required interface control process-
ing. Operator interface 82 controls microcomputer pro-
cessing 80 so as to generate commands 84, 86 and 88.
Command 84 identifies the element type whose spec-
trum is to be generated from first principles in process-
ing step 90. The spectrum so generated is adjusted in
step 92 based on the detector type that is to be simulated
according to the detector type parameters provided in
command 86. The spectrum so generated in step 90 and
adjusted in step 92 is further adjusted in step 94 based on
the experiment geometry provided by experiment ge-
ometry commands 88. The spectrum so generated in
step 90 and adjusted in step 92 and further adjusted in
step 94 is stored in step 96 in a storage device such as
disk storage 62, of FIG. 3.

FIG. 5A is a graph of an energy spectrum of iron, Fe,
collected over 1000 seconds with an electron beam
current of 0.5 nA and an acceleration potential of 20
keV. The figure shows real data overlayed upon theo-
retical data generated as described in connection with
FIG. 4. The real data is a plotted spectrum from bulk
iron acquired in a Cameca electron probe with a 9 mm?
acquisition detector which was located 52 mm from the
specimen. The theoretical spectrum was generated from
first principals using the same experimental parameters,
and no arbitrary scaling was used for either continuum
or characteristic distributions. As can be seen from
FIG. 5A, there is substantially no difference between
the real spectrum and the theoretically generated spec-
trum.

The well-known K-Ca overlap problem typical in
biological x-ray microanalysis provides a good example
of a case in which conventional statistical procedures
cannot provide accurate estimates of the variances
about the mean energies because one cannot extract
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independent estimates of the peak and background
under the peak. When the peak-to-background ratio is
small, as it is for the Ca peaks in our chosen example, the
uncertainty in peak estimation is strongly influenced by
the continuum statistics and the effect of the overlap-
ping K K2 peak. The technique of spectrum generation
described in this disclosure permits a rapid simulation of
n spectra each of which has the statistical properties of
actual spectra acquired for typical experimental times.
Each spectrum can be analyzed by any of the proce-
dures normally used to extract peak areas. The variance
about the mean can then be calculated directly.

As an experiment to demonstrate this procedure, 25
spectra were generated, identical except for the count-
ing statistics, representing a typical biological matrix
which contains 0.02 weight fraction K and 0.00022
weight fraction Ca. FIG. 5B illustrates such a spectrum.
The spectrum was generated with parameters corre-
sponding to a Vacuum Generator HB 501 dedicated
STEM operating with a 100 kV, 0.5 nA electron beam
for 1000 seconds of acquisition time, and a UTW Si(Li)
detector with a 0.18 steradian solid angle used as the
x-ray detector.

The spectra were analyzed using a sequential simplex
algorithm to produce the mean value and standard devi-
ation for K of 10462+ 143 and of Ca of 80+71. Clearly,
to extract this weight fraction of Ca with 97% certainty
will require a considerably longer acquisition time per
spectrum and/or more spectra.

It will be apparent that an analyst using the spectrum
analyzer may generate a sufficient plurality of spectra
so as to determine the experimental parameters required
so that the mean value and standard deviation obtained
will be sufficiently controlled so that the experiment
conclusion may be supported to the desired level of
confidence. Without this process, it would be necessary
to collect and analyze real spectra in order to design the
experiment necessary to achieve a desired variance or
MDL.

In FIG. 6, acquired spectrum 120 is received from
input device 68 of FIG. 3. Acquired spectrum 120 is fed
through one of transform 122, transform 124 and trans-
form 126 according to mode control 128. Transforms
122, 124 and 126 serve to transform the data format
provided by commercial data acquisition system 2 of
FIG. 1 into a standard format for spectra used in spec-
trum analyzer 6 of FIG. 3. When acquired spectrum 120
is of a wavelength dispersive spectrometer form, con-
verter 130 converts spectra data to an energy distribu-
tion spectrum form according to control mode 132. The
resulting spectrum is stored in a storage such as disk
storage 62 of FIG. 3. ‘

FIG. 7 illustrates details of display 66 from FIG. 3.
The display comprises display screen 160 and spectra
memories 158. Spectra memories 158 in turn comprise a
plurality of memories 158a, 158, . . . 158», which plu-
rality is preferably ten. Each display memory is capable
of storing a single spectrum comprising, for example,
8192 channels. The plurality of spectra memories 158
are overlayed on each other and displayed on display
160 in such way as to indicate to an observer distinct
spectra distributions. Such indication may be by means
of multicolored displays where each spectrum memory
image is assigned to a unique color. Individual spectrum
memories are loaded with data from microcomputer
processing 150 or cleared of data according to com-
mands from microcomputer processing 150. Microcom-
puter processing 150 is the display processing portion of
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the processing carried out in microcomputer 60 of FIG.
3. Operator interface 152 is comprised of keyboard-
/mouse 64 of FIG. 3 or equivalent. Storage 154 is the
display storage allocation of disk storage 62 of FIG. 3,
or equivalent. In operation, an analyst, operating spec-
trum analyzer 6, processes spectra as required and saves
to storage 154 such spectra as the analyst desired dis-
played. Under control of microcomputer processing
150 desired spectra for display are transferred from
storage 154 to spectra memories 158, and consequently
displayed on display 160.

FIG. 8 shows spectra processing commanded by an
analyst. In general, an analyst issues commands through
keyboard/mouse 64 to microcomputer 60, as shown in
FIG. 3, to generate theoretical spectra data as shown in
FIG. 4, or to import acquired spectra data as shown in
FIG. 6. Spectra data so acquired or generated is further
processed as shown in FIG. 8. Spectra data so acquired
or generated is stored in storage 180 which is a portion
of disk storage 62 of FIG. 3. Under a command from an
analyst, spectra 182 is retrieved from storage 180 and
fed to one of processes 184, 186, 190, 192 and 194. The
output of the process is stored in storage 180 according
to analyst commanded control mode to switch 188 and
196. In process 190, spectra 182 is scaled by muitiplying
each channel in the spectrum by a scaling constant,
which may be positive or negative. Process 192 addi-
tively sums two spectra provided though spectra 182.
Process 194 filters spectra 182 according to a variety of
criteria including differentiation, integration, etc. The
results of processes 190, 192 and 194 are spectra which
are returned to and stored in storage 180. Process 184
returns peak areas and background value from an ac-
quired spectrum utilizing a plurality of generated or
acquired background-free spectrum segments by multi-
ple linear regression. A properly scaled background-
free spectrum segment of a constituent element is de-
ducted from an acquired spectrum leaving a residual
spectrum. Thereafter, another properly scaled spectrum
segment of another constituent element is deducted, the
process being repeated until all significant elements
have been deducted and the residual spectrum shows no
contributions from the peaks of interest. Process 184
stores the constituent elements, scaling factors, and
other parameters pertaining to the process in storage
180 when switch 188 is commanded by the analyst exer-
cising control through the proper control mode. In an
analogous way, process 186 extracts critical parameters
by a sequential simplex process and stores the critical
parameters in storage 180 when switch 188 is so com-
manded by the control mode. The parameters so ex-
tracted may be used to calculate elemental concentra-
tions using one of the standard quantitation routines
provided.

FIG. 9 shows a method for quantitative identification
of the elemental constituents of a sample according to
the present invention. In process step 300, a spectrum
produced by electron microscope 2 and stored on data
interchange interface 4 of FIG. 1 and received in input
device 68 of FIG. 3 and transferred to disk storage 62 of
FIG. 3 under control of microcomputer 60 of FIG. 3 is
written in one of the spectra memories 158 of FIG. 7.
An analyst observing display 160 identifies a constituent
element in the plotted acquired spectrum. In step 320,
the analyst generates a theoretical peak distribution for
the identified element according to the process shown
in FIG. 4 and deducts it from the acquired spectrum in
step 340. The resulting spectrum is plotted in one of the
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spectra memories 158. In step 350, the analyst observes
the differences between the acquired spectrum and the
theoretical generated spectrum. In step 360, the analyst
adjusts the parameters used for generating the theoreti-
cal spectrum so that differences between the theoretical
spectrum generated according to the adjusted parame-
ters and the acquired spectrum are minimized over a
selected portion of the acquired spectrum.

In step 340, the analyst deducts the theoretical spec-
trum generated according to the adjusted parameters
from the acquired spectrum and displays the residual
spectrum. In step 370, the analyst decides if the residual
spectrum indicates that further constituent elements
remain to be parsed. If the answer to this decision is yes,
in step 310, the residual spectrum is labeled parced
spectrum and plotted in one of the spectra memories
158. Again, in step 340, the analyst identifies a constitu-
ent element appearing in the parsed spectrum. The ana-
lyst then repeats the generation and plotting of the
theoretical spectrum for the identified element in step
320 and 340 and repeats steps 350, 360 and 370 until no
more elements are identified in the parced spectrum, at
which time all constituent elements of the sample have
been identified including parameters pertaining to the
samples such as the peak areas which can be converted
to percentage composition by the appropriate quantita-
tion scheme. In step 380, these parameters are output
through output device 70 to output interface 8 in the
form of reports, graphs or interfaces with other comput-
ing machinery.

A spectrum as used herein refers to an x-ray energy
distribution comprised of a plurality of channels, each
channel containing a count. A channel is defined by a
channel width beginning at a lower energy end of the
channel and spanning to an upper energy end of the
channel. The plurality of channels are disposed adjacent
to one another to form a continuous region of interest
spanning from the lowest energy of interest to the high-
est energy of interest. For example, a channel may have
a width of 10 eV. The plurality of channels may, for
example, comprise 8192 channels which, when concate-
nated together, span a region of interest that is 81.92
KeV wide. Each channel is characterized by a count
representing the number of x-ray photons that were
detected by the x-ray detector between the lower en-
ergy boundary and upper energy boundary for that
channel. It will be appreciated that counts collected
during a short experimental time will be smaller than
counts collected during a longer experimental time.
Random factors, which constitute -noise, associated
with real spectra cause a randomness in the distribution
of the counts in the plurality of channels. It will be
apparent that longer experimental times, which collect
larger counts, will reduce variances between one exper-
iment and the next. It will be appreciated that each
spectrum so produced is a histogram of the x-ray pho-
tons that were detected during the experiment.

A spectrum so defined is stored in a computer as a
linear array. Each element of the array corresponds to a
respective channel, the channel being characterized by
a channel width and a center channel energy or posi-
tion. In order to compare one spectrum to another, it is
necessary for each of the two spectra to be character-
ized by the same channel definitions.

Spectra may be stored as real or integer data and are
usually accompanied by a header which contains a body
of information about the detector, the electron micro-
scope/x-ray acquisition system, specimen conditions
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and orientations and other experiment conditions. Spec-
tra and headers that come to the analyzer from other
system may be in ASCII, binary, or mixed format, or
may be in a predetermined “order” which depends on
the specific system which is the source of the data. The
invention herein reads the spectra data from a plurality
of diverse spectra acquisition systems, processes the
spectra data, and rewrites the spectra data in the inter-
nal format standard of the Desk Top Spectrum Analy-
zer. A dialogue interface is provided to allow the user
the add information that may not be stored in the files of
other spectra acquisition systems.

A typical spectrum contains one or more peaks gen-
erally representative of one or more atomic elements
plus background spectral energy. A peak may be char-
acterized by specific parameters. For example, a peak
may be characterized by its amplitude, width and posi-
tion (energy of the peak).

It is a task of the present invention to determine the
amplitude, width and position of a spectral peak in a
sample spectrum. This task is made complicated due to
the background energy contained in the sample spec-
trum and due to the spectral response from a plurality of
different atomic elements in the sample specimen. Al-
though it is desirable to determine the amplitude, width
and position of a peak associated with calcium, for ex-
ample, it is difficult to determine what portion of the
count in a given channel is attributable to the calcium
and what portion of the count in the same given channel
is attributable to a conflicting element such as potas-
sium, for example. In complex biological and material
science specimens there may appear a complicated ma-
trix of elemental constituents of the sample, each of
which contribute to the count in regions of spectral
interest for the other elemental constituents. It is 2 com-
plex procedure to first determine the quantity of a first
elemental constituent of the matrix and then remove
from the sample spectrum the contribution in the sam-
ple spectrum that resulted from the first elemental con-
stituent of the specimen. If successfully done, the resid-
val spectrum will reflect an x-ray spectrum that would

be produced if the first elemental constituent were not

present in the specimen. As this process in continued,
the contribution to the sample spectrum caused by addi-
tional elemental constituents may be deducted from the
sample spectrum so as to parce the spectrum into its
elemental constituents.

There are several well known techniques for deter-
mining the peak areas of constituent elements. For ex-
ample, multiple linear least squares fitting techniques
are well known and may be applied to a sample spec-
trum to determine best fits against the known spectrum
of the elemental constituents of the specimen under
consideration. Another well known technique in the
analytical chemical arts is simplex peak fitting. Both of
these techniques are implemented in the invention.

Once the peak area of an elemental constituent of the
sample spectrum has been quantitatively determined, it
is a task of the present invention to provide quantitative
estimates of the concentrations of the elements in the
specimen. Several well known procedures are provided
by the invention for this task. In the material sciences, a
well known technique is ZAF analysis to convert x-ray
intensity peak areas into chemical values representative
of the elemental weight fractions of the elemental con-
stituents of the specimen. A well known procedure for
biological quantitation is the Hall method. Yet another
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well known procedure to the material sciences is stand-
ardless ZAF analysis.

FIGS. 10-21 describe by way of example a preferred
embodiment of the invention. FIG. 10 illustrates the
steps for accessing old fit files. A fit file is a binary file
of results from Multiple Linear Regression or Simplex
processing of spectra. A selection such as “get old fit
file” from a file menu as illustrated in step 402 sets the
control mode of the analyzer so that the user will be
queried as to either show results, change name or out-
put. If the user selects show results, the results in the fit
file currently selected will be displayed in an ASCII
format. If the user selects change name, the user will be
given an opportunity to enter a new name for the fit file.
If the user selects output, the user will be given the
option to output the fit file in a variety of spreadsheet
formats or an ASCII text file format.

FIG. 11 illustrates steps for receiving external spectra
files. When the user selects “read sundry file formats”
from the file menu the analyzer sets control modes to
receive the input spectrum files. The user enters a spec-
trum header into a “work” storage area and enters an
experiment header into the “work” storage area. There-
after, the user selects from among a plurality of external
file choices to import a selected sample spectrum file
and convert to a desktop spectrum analyzer file format
for display and processing.

FIG. 12 illustrates the steps for making a multiple
linear least squares reference. At step 462 the work
spectrum is prepared as described in FIG. 11 or re-
trieved from an analyzer storage area. At step 464 a
region of interest is identified by moving a cursor across
a segment of the displayed work spectrum. At least two
regions are selected to fit the background. At step 466
the background is deducted from the spectrum, At step
470 the user specifies a region of interest for each char-
acteristic peak bundle which has no overlay from an

adjacent bundle. The user may specify the region of

interest using, for example, a mouse and mouse directed
cursor in conjunction with the display of the spectrum.
At step 472 the user selects multiple linear least squares
references from the file menu. The user may then spec-
- ify either a new reference file at step 474, display a
reference file at step 476, or to add a reference to an old
file at step 478. If a reference is to be saved as selected
at step 474 or 478, the user then selects the elements in
step 480 to define the region of interest (ROI) peak
bundles to be saved as references. Thereafter the refer-
ence may be appended to the file at step 482, or the user
may select either to keep an old reference at step 484 or
replace an old reference at step 486.

In FIG. 13 the simplex peak fitting procedure is illus-
trated. At step 502 the work spectrum is prepared and at
step 504 at least one region of interest is identified. At
step 506 the simplex analysis procedure is selected. At
step 508 the user selects the elements to be fit by the
procedure. At step 510 parameters of the algorithm are
displayed to the user for possible modification. At step
512 the user is given the opportunity to change the exit
tolerance used in the simplex analysis. At step 516 the
user identifies the spectrum type, EDS (energy disper-
sive spectra) or WDS (wavelength dispersive spectra).
And at step 518 the user identifies the detector parame-
ters. At step 514 the user is given output options for the
results of the analysis. At step 520 the user may accept
the simplex analysis. At step 522 the user selects an auto
curve fit on a file of spectra: peak fitting is done in step
524, and output files are produced in steps 532, 534

14

and/or §36. Alternatively to step 522, at step 526 the
user selects to fit the “work” spectrum: the peaks are fit
in step 528, and the user may select in step 530 to add
the fit results to the output files as in step 532, 534 and-
/or 536.

FIG. 14 illustrates file output options. At step 552 the
user is prompted to choose output options comprising

" the option at step 554 to name a binary file, the option at
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step 5§56 to produce a text report, the option at step 566
to accept the output and create a file of the results, and
the option at step 558 to produce outputs for spread-
sheets sheets including Excel at step 560, Kaleidagraph
at step 562 and StatView at step 564.

FIG. 15 illustrates the procedure 600 of making files
of standards data to be used by the ZAF quantitation
procedure. In step 602 the spectrum from which the
standard data are to be obtained is stored in the Work
spectrum display memory. In step 604 the experiment
information is verified and modified through the Exper-
iment Header display dialogue. In step 608 the composi-
tion of the specimen that produced the spectrum is
verified through the Spectrum Header display dialogue.
In step 610 peaks to be fit in the procedure are indicated
by sweeping (with the mouse) regions of interest en-
compassing them. In step 612 the Simplex or ML (multi-
ple linear least squares) fitting procedure is setup. The
fits to the selected peaks are performed in step 614 and
the results are held in memory. In step 616 the option
ZAF is selected from the ‘Standards Files’ choice of the
File Menu. In step 624 an old file may be opened to
append the new standards data or in step 626 a new file
may be created for the data. In step 618 the ZAF quanti-
tation procedure is applied to the fit results held in
memory. If the option 620 is chosen, the data is written
to the binary file chosen in step 624 or step 626.

FIG. 16 illustrates the procedure 640 for performing
a quantitative Hall analysis of spectra from thin biologi-
cal specimens. In step 642 the Simplex or ML peak
fitting procedure is setup, or setup and run on a Work
spectrum file. In step 644 the Hall dialogue is presented
to the user when ‘Hall Analysis’ is selected from the
‘Analysis’ option of the Main Menu. In step 646 the user
may choose to examine the results of a previous Hall
procedure. To perform a Hall procedure, in step 648 the
user selects to quantitate a Work spectrum file or in step
650 selects to quantitate a stored binary ML or Simplex
fit results file. In step 652 a file of parameters defined by
a previous Hall procedure may be read into memory.
The user may then proceed to step 666. In step 654 the
user may choose to apply-a background correction for
a support film. A dialogue is then displayed from which
he may choose option 656 to obtain the correction data
from the ‘File to Quantitate’ or option 658 to obtain the
data from ‘A Spectrum’ file selected from the list pres-
ented. In step 668 the user may choose to apply a cor-
rection for an element not in the specimen but with a
contribution to the spectra. A dialogue is then displayed
from which he may choose option 672 to obtain the
correction data from the ‘File to Quantitate’ or option
670 to obtain the data from ‘A Fit Result’ file selected
from the list presented. If step 652 was omitted, in step
660 the user selects from a list of fit results files until
standards data is found for each element in the spectra
or file to quantitate. In step 662 the user enters into an
edit text box the average atomic number of the speci-
men matrix. In step 664 the user enters the name of the
file to store the results of the Hall quantitation. In step
664, ‘Save Setup’, the user saves the defined parameters
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to a named file. In step 666 the user chooses ‘Accept’ to
retire the dialogue. If option 646 was chosen, in step 678
the selected Fit Results File is opened and in step 680
the Hall procedure is performed using the data in the
File to calculate elemental concentrations. If option 648
was chosen, in step 676 the Work spectrum file is
opened and the first spectrum is displayed. In step 690
the Hall quantitation procedure is initiated on the file of
spectra. In step 692 the peaks in all the files are fit by the
procedure selected in step 642 and the concentrations
are calculated by the Hall method. The data and con-
centrations are written to a default binary Hall file or to
the file named in step 664; the concentrations are writ-
ten to the Fit Results File. Alternatively, in step 682 the
Hall quantitation procedure is initiated only on the
spectrum displayed. In step 684 the peaks in the file are
fit by the procedure selected in step 642 and the concen-
trations calculated by the Hall method. In step 688, the
data and concentrations are written to a default binary
Hall file or to the Hall file named in step 664; the con-
centrations are written to the Fit Results File. Other
output files are written according to the selections made
from the Output Options of the fitting procedure setup:
in step 694 a binary fit results file is written; in step 696
an ASCII fit results file is written; in step 698 the spread
sheet files are written.

In FIG. 17 is described the process 720 of exiting
from the program. In step 722 the user chooses ‘Quit’
from the ‘File’ selection of the Main Menu. In step 724
values of all program parameters are written to the
binary file ‘Preferences. MCA’ and the program termi-
nates.

In FIG. 18 a procedure 730 is described for perform-
ing a ZAF quantitation without the use of measured
standards data. In step 732 a spectrum in the Work
spectrum image memory is displayed. In step 734, the
Experiment Header and the Spectrum Header dialogues
are examined to verify the spectrum file data. In step
736 peaks to be fit and quantitated in the procedure are
indicated with the mouse by sweeping regions of inter-
est encompassing the peaks. In step 738 either a Simplex
or Multiple Linear Least Squares fitting procedure is
setup. In step 740 the user chooses the option to perform
procedure 730 from the ‘Analysis’ selection of the pro-
gram Main Menu and is presented with a data input
dialogue for an element to be quantitated by difference
or stoichiometry. In step 742 the user supplies informa-
tion indicated by that dialogue. In step 744 the user
initiates the fitting procedure on the spectrum in Work.
In step 744 the peaks are fit and the results are held in
memory. In step 748 a ZAF quantitation of the results is
performed. In step 750 the user requests that the results
of the fitting and the concentration values be appended
to a ZAF output file and the files selected from the
Output Options of the fitting procedure setup. In step
752 the ASCII results file is written. In step 754 the
spread sheet files are written. In step 756 the ZAF re-
sults file is written. In step 758 the binary results file is
written.

FIG. 19 describes the procedure 780, Multiple Linear
Least Squares Peak Fitting. In step 782 the user selects
the procedure and is presented with the setup dialogue.
In step 784 the user selects to open a file of required
setup data saved from a previous procedure 780. This
data includes the families of characteristic lines to be fit
in the Work spectrum file, the files of reference distribu-
tions to be used, and the derivative references to be
included. In step 786 the user may change the set of
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derivative references. Alternatively, in step 788, the
user selects the families of characteristic peaks to be fit
in the Work spectrum file. In step 790 the user selects
the derivatives of the references to be used in procedure
780. In step 792 the user selects from a list of reference
files until references are found for each family of char-
acteristic peaks. In step 794 the user opens the Output
Options dialogue and names the files of results to be
saved. These may include a binary file, an ASCII file,
and any of three popular ASCII spread sheet files, In
step 796 the user may save a file of setup data. In step
798 the user accepts the setup and closes the dialogue.
In step 806 the user initiates the fitting procedure on the
entire Work spectrum file. In step 808 all the fitting
procedure is applied to each spectrum in the file and the
results are stored in the selected output files. Alterna-
tively, in step 800 the user initiates the fitting procedure
on only the spectrum displayed from the Work spec-
trum image memory. In step 802 the fitting is per-
formed. In step 804 the user commands that the results
of the fitting be appended to the selected output files.
Results are written to the binary file in step 819, to the
ASCII file in step 812, and to the spread sheet files in
step 814. .

FIG. 20 describes the procedure 830 by which the set
of values for program parameters is read from or writ-
ten to a binary file. In step 832 the user selects the pro-
cedure and is presented with a menu of file options. In
step 834 or step 844 one of two default files is selected
for writing; or in step 838 the user names a file to be
opened for writing. In step 836 or 838 or 846 the se-
lected file is opened. In step 842 the set of current values
of all program variables is saved in the selected binary
file. Alternatively, in step 848 or step 858 one of two
default files is selected for reading; or in step 852 the
user names a file to be opened for reading. In step 850 or
854 or 860 the selected file is opened. In step 842 the set
of values for all program variables is read from the
selected binary file and becomes the active set.

It will be appreciated that data is stored in files in
various forms throughout the DTSA. FIG. 21 illus-
trates, in a Pascal format, the data structure of the ex-
periment header of experiment files, and FIG. 22 illus-
trates the data structure of the spectrum header of each
spectrum file. In the same way, FIG. 23 illustrates the
data structure of the multiple linear least squares setup
files (ML Setup Files) and the references used in the
multiple linear least squares regression. FIG. 24 illus-
trates the fit results file data structure. FIG. 25 illus-
trates the file structure for Hall analysis. FIG. 26 illus-
trates the file structure for ZAF analysis. When analysis
is exited on the desk top spectrum analyzer, all critical
control parameters are saved in a preference file. FIGS.
27A and 27B illustrate the preference file data structure
of the preferred embodiment.

In the preferred embodiment the desk top spectrum
analyzer is implemented in a computer such as a Macin-
tosh computer. FIG. 28 illustrates a display for opening
the desk top spectrum analyzer (FIG. 1, element 6)
where a user may open the program by selecting the
application (DTSA), the default preference file (prefe-
rences. MCA), a spectrum file (K.01 in C__Spec), a mul-
tiple linear least squares setup file (ML _Setup_Bio), or
a binary fit results file (ML for Hall). In the display are
also shown the file of x-ray line data use by the pro-
gram, XRayData, and an ASCII fit results file, Cur-
veFitResults. Upon opening the program DTSA, the
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display shown in FIG. 29 (also FIG. 3 element 66)
appears.

FIG. 29 illustrates a plurality of function choices
arranged across the top of the display and in the lower
left hand area of the display: File, analysis, generate,
math, parameters, display, show header, calibrate, mul-
tiple linear least square, simplex, Do a Fit, Add Fit, See
Fit, strip peak, calculator, strip escape, save work, peak
ID and ROI (region of interest); a spectrum acquisition
status “meter”; and a plurality of spectrum display con-
trols in the lower right hand area of the display. Upon
selecting each of the menu choices on the top line of the
display, a pull down submenu appears as illustrated in
FIGS. 30-36. The operator selects from the submenu to
set control modes within the desk top spectrum analy-
zer. For example, the user may access the display illus-
trated in FIG. 32 to generate one or more spectra from
first principles as depicted in element 90 of FIG. 4. FIG.
34 illustrates a reduced intensity submenu label “experi-
ment header” and “spectrum header”. This reduced
intensity is referred to as “greyed”. This indicates that
there are no active experiment files open. If an experi-
ment file has been opened, these submenu choices
would not be “greyed”.

FIG. 35 illustrates the active display memories (see
FIG. 7 element 158). In the figure only the “work”
display memory is active and currently displayed.

FIG. 36 illustrates the submenu by which the user
selects headers corresponding to one of the image mem-
ories for display in text format.

Many of the submenu choices open additional sub-
menus or create dialogue interfaces for the user to set
input data. FIG. 37 illustrates a dialogue interface
opened when the “display options” submenu choice
was selected from the file submenu illustrated in FIG.
30. From this dialogue interface, the user can select a
spectrum, plot symbols, line connect choices and spec-
trum color with which to display the selected spectrum.

FIG. 38 illustrates a dialogue interface opened from
the generate submenu. In this interface, the user can
select the fractional weight composition of a plurality of
constituent elements to be used for the generation of a
theoretical spectrum from first principles. FIG. 38 indi-
cates that a sample of 100% potassium is to be used to
generate the theoretical spectrum. FIG. 39 illustrates
the next dialogue interface where the user is prompted
to indicate the destinations for the selected steps or
functions related to generation results.

FIG. 40 illustrates a dialogue interface reached by
selecting parameters and then selecting detected param-
eters. In this dialogue interface the user is prompted to

define the detector to be used in the experiments per-

formed. FIG. 41 illustrates the dialogue interface used
to define the detector-specimen geometry setup. The
display includes a normal plane containing the specimen
on which an exciting beam impinges. The detector is
located at an azimuthal angle and detector elevation
angle which the user may define.

FIG. 42 illustrates a calculator dialogue interface
accessed by selecting the calculator choice in the lower
left hand area of the display illustrated in FIG. 29. With
the calculator dialogue the user may select two input
operands (column A and column B) and an output (col-
umn C). The operands in this case are spectra contained
in one of the plurality of image memories (FIG. 7, ele-
ment-158). The user may then select the operation to be
performed. Fifteen operations are indicated in FIG. 42.
However, FIG. 42 illustrates a scroll window that dis-
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plays only fifteen of a plurality of options where the
plurality exceeds 15. Having selected the operation, the
user next selects to “do it”.

FIG. 43 illustrates a dialogue interface entered by
selection from the math submenu. The dialogue is for
converting a wavelength dispersive spectrum to an
energy dispersive spectrum. The user selects the wave-
length units of the spectrometer that produced the
wavelength dispersive spectrum, and selects to convért
either the X and Y axes, or the X axis only. The user
then enters the beginning and ending channel for the
wavelength dispersive spectrum, the values of the be-
ginning and ending channels, and the channel width.
The user then selects the crystal type used in the wave-
length dispersive spectrometer and default 2d the spac-
ing of the crystal is entered by the program and may be
changed by the user.

FIG. 44 illustrates the overlap display 160 of FIG. 7.
The display illustrated is the result of fit processing. For
example, on the left hand half of the display, a double
peak is illustrated. The peak has been labeled K Kq, K
Kg, CaKsand Ca Kg. At the bottom of the double peak
is a small “bumpy” line and a smooth line. The bumpy
line is the residual after a properly scaled K and a prop-
erly scaled Ca reference have been subtracted from the
work spectrum. The smooth line is a best fit
“smoothed” residual. The line markers are set on Cu 29
as is indicated in the upper right hand corner of the
display.

FIG. 45, lower section, illustrates the dialogue inter-
face produced when the “strip peak” choice is selected
from the lower left hand corner menu of the display
illustrated in FIG. 29.

FIG. 46 illustrates the output results displayed ac-
cording to the process of FIG. 10 step 404.

FIG. 47 illustrates the dialogue interface that is pro-
duced at step 432 of FIG. 11. FIG. 48 illustrates the
dialogue interface produced at step 436 of FIG. 11, or
other steps where the experiment header may be ac-
cessed or modified.

FIG. 49 illustrates the dialogue interface produced at
step 434 of FIG. 11, step 734 of FIG. 18, or other steps
where the spectrum header may be accessed or modi-
fied.

FIG. 50 illustrates the display of a reference and a
dialogue interface for.choosing a reference to display.
This display is accessed by selecting the file submenu as
illustrated in FIG. 30, then selecting the MLLSQ refer-
ences choice in the file submenu which produces a small
three choice peripheral menu, one choice of which is
display reference. This choice leads to the display indi-
cated in FIG. 50. Display indicated in FIG. 50 may also
be produced from step 476 of FIG. 12.

FIG. 51 illustrates a dialogue interface for the user to
select “background subtract” as indicated at step 466 in
FIG. 12.

FIG. 52 illustrates a dialogue interface for the user to
generate a plurality of spectra, each spectrum contain-
ing Poisson counting noise. The plurality, preferably 25
or more, of spectra are used for statistical determination
of variance and minimum detectable limit (MDL).

FIG. 53 illustrates the interface by which the user
selects a region of interest such as indicated in step 464
of FIG. 12, step 504 of FIG. 13 and step 610 of FIG. 15.
Preferably, this interface employs a mouse and cursor
controlled by the mouse for “sweeping the region of
interest”. Upon such selection, the display will be
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brightened in the region of interest or the color in the
region of interest of the display will change.

FIG. 54 iliustrates a simplex setup dialogue interface
which is accessed from the choice “SIMPLEX” in the
lower left hand corner of the display. This setup dia-
logue interface prepares the desk top spectrum analyzer
to process spectra as illustrated in FIG. 8 element 186.
Step 502 of FIG. 13 is preceded by this setup display
interface.

FIG. 55 illustrates the dialogue interface used for
selecting elements for either ML (multiple least squares
regression) or simplex fitting, as selected in step 480 of
FIG. 12, 508 of FIG. 13 or 788 of FIG. 19.

FIG. 56 illustrates the dialogue interface for selecting
output options as indicated at step 410 of FIG. 10, step
514 of FIG. 13, step 794 of FIG. 19 and selection be-
tween steps 752, 754, 756 and 758 of FIG. 18.

FIG. 56 illustrates an output option dialogue interface
for choosing output files for fitting procedure results.
As indicated in the lower left hand corner of FIG. 56,
the output options illustrated are for fitting results from
a multiple linear least squares regression. It will be ap-
preciated that this dialogue interface may be used for
output files for results from simplex fitting.

FIG. 57 illustrates the main dialogue interface for
ZAF quantitization analysis as selected in step 616 of
FIG. 15. '

FIG. 58 illustrates the main dialogue interface for
Hall quantitization procedure as illustrated in step 644
of FIG. 16.

FIG. 59 illustrates a dialogue interface which appears
after the ZAF quantitization dialogue interface illus-
trated in FIG. 57. The dialogue interface illustrated in
FIG. 59 permits the user to define an unanalyzed ele-
ment as indicated in step 742 of FIG. 18.

FIG. 60 illustrates a setup dialogue interface for mul-
tiple linear least squares regression, the process indi-
cated by element 184 of FIG. 8 and step 782 of FIG. 19.

FIG. 61 illustrates the sub dialogue, accessed from
the spectrum acquisition status “meter” of FIG. 29, to
control spectrum acquisition based on a NuBus card.

FIG. 62 illustrates a sub dialogue of the control dia-
log of FIG. 61 whereby the user inputs the acquisition
parameters for spectrum acquisition based on a NuBus
card.

It will be apparent to persons skilled in the art that the
spectrum analyzer so described affords the analyst the
ability to generate theoretical spectra from first princi-
ples so as to take into account the various detector
characteristics and experimental geometries that affect
the detected spectrum distribution, and to simplify the
spectrum quantitation process and the determination of
minimum detectable limits. It will be appreciated that a
unique feature provided by the spectrum generation
function of the spectrum analyzer is the option to plot,
in any one of a plurality of overlapping displays, the
spectrum at any step in the generation/detection pro-
cess, or annotate and plot important physical parame-
ters as a function of appropriate variables. Accordingly,
the analyst will be able to quickly modify and observe
the effect of a new parameter value on the selected
distributions at each interaction in the process so that
the analyst is better able to understand the physics that
result in the detected spectrum distribution. The spec-
trum analyzer is suitable for desktop operation and
receives transfers of spectra data from a plurality of
commercial x-ray systems. This feature permits both the
spectra from many systems and the quantitative results
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of processing to be directly compared, and evaluations
made of the performance of various electron column-
acquisition systems. While the analyst studies the spec-
tra at his own desk, time is freed on the electron co-
lumn-commercial analyzer system in the laboratory.
The spectrum analyzer generates a theoretical spectrum
according to input parameter values important to physi-
cal characteristics of 2 number of types of x-ray detec-
tors. This unique feature permits comparison of an ex-
perimentally acquired spectrum using a new detector
with a theoretically generated spectrum using the man-
ufacturer’s specifications of the new detector. In this
way the analyst can determine whether the detector
meets the manufacturer’s specification, diagnose prob-
lems such as contamination on the detector window,
and determine if the detector has been degraded by any
other factor. The spectrum analyzer stores in a prefer-
ence file a set of parameters values particular to the
experimental conditions. The same parameter values are
used to generate theoretical characteristic peak distribu-
tions. A plurality of such distributions, corresponding to
a plurality of constituent elements to be studied in a
specimen, are generated and stored to be used as refer-
ence distributions to perform quantitative analysis using
very rapid multiple linear regression methods. This
feature obviates the need to perform laboratory experi-
ments to acquire reference spectra from pure elements
under the conditions used for measuring the specimen,
thereby eliminating the time consuming acquisition of
spectra with very good statistical characteristics. The
spectrum analyzer imports spectra acquired with a
wavelength dispersive x-ray analyzer and converts the
spectra to an energy dependent distribution. This fea-
ture permits wavelength dispersive spectrometer data
to be analyzed with the same procedures used for en-
ergy distribution spectrometer data. The spectrum ana-
lyzer permits an analyst to deduct from an acquired
spectrum a reference spectrum properly scaled so as to
reveal remaining constituent elements in the acquired
spectrum. This feature permits small overlapped peaks
or background under the peak to be observed without
interference and is an important tool for qualitative
analysis. The features of the present invention have
been described with reference to x-ray spectra gener-
ated with an electron beam. It will be appreciated that
the invention described herein is also applicable to x-ray
fluorescence spectra with appropriate changes well
known to persons of ordinary skill in this art.

Having described a preferred embodiment of a novel
spectrum analyzer, it is obvious that other modifications
and variations will be suggested to those skilled in the
art in light of the above teachings. It is therefore to be
understood that changes may be made in the particular
embodiment of the invention disclosed which are
within the full intended scope of the invention as de-
fined by the appended claims.

Having thus described the invention with the details
and particularity required by the patent laws, what is
claimed and desired protected by letters patent is set
forth in the following claims.

What is claimed is:

1. A spectrum analyzer system comprising:

a spectrum analyzer;

a data interface means for porting spectra data from

an x-ray acquisition system to said spectrum analy-

zer; and .
output interface means driven by said spectrum ana-

lyzer for providing output data in a desired form;
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wherein said spectrum analyzer comprises:

a microcomputer means comprising processing
means for processing spectra data according to a
selected one of a plurality of control modes and
a controlling means for selectively configuring
the processing means for processing said spectra
data according to said selected control mode,

operator interface means comprising keyboard-
/mouse means for receiving commands from an
operator to set said selected control mode, and
display means for displaying at least one of said
selected control mode and spectra data pro-
cessed according to said control mode,

storage means connected to said microcomputer
means for storing at least spectra data,

input device means connected to said microcom-
puter means for receiving said data interface
means, and :

output device means connected to said microcom-
puter means for driving said output interface
means; and

wherein said display means comprises:

overlay means for forming an overlaid image from
a plurality of spectra so that each spectrum of
said plurality of spectra is distinguishable,

annotation means for marking points in and label-
ing said overlaid image, and

display apparatus for displaying said marked and
labeled overlaid image to said operator.

2. The spectrum analyzer system of claim 1 wherein
said processing means transfers a selected spectrum
from said storage means to said overlay means of said
display means according to a command from said oper-
ator interface means.

3. The spectrum analyzer system of claim 1 wherein
said processing means deletes a selected spectrum from
said overlay means according to a command from said
operator interface means.

4. The spectrum analyzer system of claim 1 wherein
said overlay means forms said overlay image of said
plurality of spectra wherein each of said spectrum com-
prises a plurality of channels, each channel having an
amplitude.

5. A control system emulating an x-ray spectrum
generation and analyzing system on a computer, the
computer comprising:

a controller;

data input means for inputting data to the computer;

data output means for outputting data from the com-

puter;

interface means for connecting the data input means

and data output means to the controller; and

memory means for storing data;

wherein the controlier comprises;

experimental apparatus emulation means for emu-
lating operating characteristics of an experimen-
tal apparatus, including operating characteristics
of an incident exciting beam,

experimental geometry emulation means for emu-
lating geometrical relationships between ele-
ments of the emulated experimental apparatus,

material sample emulation means for emulating
physical properties of an experimental material
sample,

physics equations selecting means for emulating
physical interactions of the emulated material
sample and the incident exciting beam of the
emulated experimental -apparatus, and

15

20

25

30

35

45

S0

55

60

65

22

data generating means for generating theoretical
x-ray spectrum data based on the emulated ex-
perimental apparatus, the emulated geometrical
relationships and the emulated material sample
and the emulated physical interactions.

6. The control system of claim 5, wherein the data
input means comprises at least one of an actual experi-
mental apparatus, a keyboard, a mouse, a hard drive, a
disk drive, and a remote computer.

7. The control system of claim 5, wherein the data
output means comprises at least one of a video display,
a plotier, and a printer.

8. The control system of claim 5, whérein the mem-
ory means comprises at least one of a RAM, a ROM, a
hard drive, a disk drive, and a remote computer.

9. The control system of claim 5, wherein the emu-
lated experimental apparatus comprises:

an incident exciting beam generator;

at least one resulting photon detector; and .

a material sample.

10. The control system of claim 9, wherein the inci-
dent exciting beam generator generates an electron
beam, and wherein the resulting photon detector de-
tects x-ray photons emitted by the emulated material
sample.

11. The control system of claim 9, wherein the physi-
cal characteristics emulated by the experimental appa-
ratus emulation means comprise:

an operating energy range of the emulated incident

exciting beam generator;

operating characteristics of the at least one emulated

detector; and

physical dimensions of the emulated material sample.

12. The control system of claim 9, wherein the geo-
metrical relationships emulated by the experimental
geometry emulating means comprises:

relative positioning between the material sample and

the incident exciting beam generator;

an orientation of the emulated material sample;

relative positioning between the emulated material

sample and the at least one emulated detector; and
an orientation of the at least one emulated detector.

13. The control system of claim 5, wherein the con-
troller further comprises data conditioning means for
conditioning the generated theoretical spectrum data.

14. The control system of claim 13, wherein the data
conditioning means conditions the generated theoretical
spectrum data by at least one of scaling, summing, filter-
ing, differentiating, integrating, background removing
and parsing.

15. The control system of claim 5, wherein the con-
troller further comprises emulation altering means for
altering at least one element of the emulated experimen-
tal apparatus, the emulated physical characteristics, the
emulated experimental geometry, the emulated material
sample, the emulated physical properties and the emu-
lated physical interactions.

16. The control system of claim 5, wherein the con-
troller further comprises data converting means for
converting at least one of an actual spectrum data and
the theoretical spectrum data between a wavelength
dispersive spectrum and an energy-dispersive spectrum.

.17. The control system of claim 5, wherein the con-
troller further comprises data removal means for delet-
ing data corresponding to a theoretical spectrum of the
emulated material sample from an actual spectrum of a
first material sample to create a parsed spectrum corre-
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sponding to the first material sample without the emu-
lated material sample.

18. A method for generating a theoretical x-ray spec-
trum, comprising the steps of:

emulating an actual experimental apparatus;

emulating geometric relationships between elements

of the actual experimental apparatus;

emulating an experimental sample material;

generating a theoretical spectrum data based on the

emulated experimental apparatus, the experimental

geometric relationships, the emulated experimental

material sample and first principles; and
displaying the generated theoretical spectrum.

19. The method of claim 18, wherein the step of emu-
lating an actual experimental apparatus comprises the
step of:

emulating an incident exciting beam generator;

emulating at least one resulting photon detector;

emulating an operating energy range of the incident
exciting beam generator;

emulating operating characteristics of the at least one

resulting photon detector;

emulating physical characteristics of the emulated

sample; and

altering the emulated experimental apparatus in re-

sponse to the generated theoretical spectrum.
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20. The method of claim 19, wherein the step of emu-
lating the geometric relationships comprises the steps
of:
emulating relative positions of the emulated incident
exciting beam generator, the emulated experimen-
tal sample and the at least one emulated detector;
and
emulating orientations of the emulated material sam-
ple and the at least one emulated detector.
21. The method of claim 19, wherein the step of alter-
ing the experimental apparatus comprises the steps of:
determining an experimental goal;
generating the theoretical spectrum;
determining if the generated theoretical spectrum is
adequate based on the determined experimental
goal; and
altering the experimental apparatus based on discrep-
ancies between the generated theoretical spectrum
and the determined experimental goal.
22. The method of claim 19, wherein:
the step of emulating an incident exciting beam gener-
ator comprises emulating an electron beam genera-
tor; and
the step of emulating at least one resulting photon
detector comprises emulating an x-ray photon de-

tector.
* & % * %



